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1. Introduction 

Regional seismic monitoring and discrimination capabilities that are desirable under a po- 

tential Comprehensive Test Ban Treaty (CTBT) can be improved by developing algorithms 

and new procedures for distinguishing between earthquakes, nuclear explosions and mining 

explosions of various kinds. Much effort in past discrimination studies has concentrated on 

extracting various features of the spectrum that are characteristic of earthquakes, nuclear 

explosions or mine blasts. 

One particular spectral feature that characterizes some mining explosions is a modu- 

lation of the spectrum introduced by a ripple-fired explosion. A ripple-fired event usually 

involves detonation of a number of explosions that are often regularly grouped in space 

and time. Such explosions, known as quarry blasts, have low magnitudes that may be close 

to those of nuclear explosions that one might monitor under the CTBT. As examples of 

these kinds of mine blasts, we consider using array data from ARCESS previously analyzed 

by Der et al (1993). Figure 1 shows a single channel from a typical mine blast, sampled 

at 40 points per second, with the four main arrival phases identified. We concentrate, in 

this discussion, on the Pn phase shown in the lower panel. Echoes due to ripple-firing 

that might be seen in such data for mining explosions would be over .1 seconds and would 

be aliases of the reflections generated by the firing configurations which probably involve 

shorter delays. A number of authors have examined various aspects of this problem and 

have proposed techniques for analyzing these ripple-fired seismic signals. Chapman et al 

(1992) show reflection patterns for a number of delay-fired configurations and propose a 

cepstral deconvolution method for estimating the delays. Baumgardt and Ziegler (1988) 

consider lining up the log-spectra and cepstra for an array and looking for common reflec- 

tion patterns. Alexander et al (1995) extend this analysis by adding up or stacking the 

spectra. Hedlin et al (1990) propose graphical techniques involving threshold modifications 

of the time varying log-spectra and cepstra. 

The approaches of Alexander et al (1995) and Baumgardt and Ziegler (1988) are based 

on the premise that a common reflection pattern should appear at each channel on the 

array. We consider exploiting that idea further by developing a test statistic for detecting 

a common set of periodic components on an array of suitably detrended log-spectra. In 

our approach, detrended log-spectra are considered as realizations of stationary processes 

whose periodic signal components are quefrencies, with periods proportional to delay time 

differences. Using an approach proposed by Shumway (1971) for detecting a common signal 

in a collection of stationarily correlated series, an F-Statistic is derived that is proportional 
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Figure 1: A Mine Blast Observed at ARCESS and the Extracted Pn Phase (40 pts 
per second). 



to the stacked cepstrum and the spectrum of the stacked log-spectra. Advantages of this 

cepstral F-Statistic stem from its superior resolving power and the fact that statistical 

significance can now be asserted for selected delay peaks. 

The frequency domain approach proposed above will be compared to a time domain 

approach that assumes multiplicative seasonal autoregressive moving-average (ARMA) 

models with a fixed regular delay structure on each channel. In general, the reflection 

delay corresponds to the seasonal lag of the moving average and the duration is propor- 

tional to the order. The low- order autoregressive component models the combined effects 

of source, path and instrument response. Seasonal ARMA models are searched over a 

number of plausible delays and duration, with the best value of a Bayesian information 

criterion BIC used to select the best model. 

Simulated array data and data from a number of mining explosions, measured at 

ARCESS in Scandinavia, will be used to compare the time and frequency domain ap- 

proaches. The organization of the report is to define the multiplicative signal model used 

in both approaches in Section 2. The frequency domain approach leading to the cepstral 

F-Statistic is derived in Section 3. Section 4 covers the competing seasonal ARMA search 

time domain approach and Section 5 uses both techniques to identify possible ripples in 

a set of 9 mining explosions. We make recommendations for further data analyses in the 

final section. 

2. Models for Ripple-Fired Signals 

A general model that seems to be useful for modeling ripple-firing follows from assum- 

ing the presence of a random signal that repeats at delays rl5 r2 ..., rn with amplitudes 

8\, 62,..., 6n on each channel of an array. This leads to a general model of the form 

n 

v;(0 = !>';(*-**) (1) 
jt=i 

for the received signal yj(t), t = 1,..., T at each of j = 1,2,..., JV channels. Here, Sj(t) 

are input signals, assumed to differ over the array. It is conventional to take 6\ = 1. For 

simplicity, we assume signals which are random and uncorrelated between channels with 

spectral density Pj(v) at frequency v, —.5 < v < .5, in cycles per point. This assumption 

may not always be realistic, but the coherence between elements for the mining explosions 

here was fairly low although we observed some differences in the spectra between channels. 

To illustrate, Figure 2 shows a contrived array, generated with a random signal and delays 
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Figure 2: A Contrived Array With Delay Firing (d=8,15,23,30) and the Associated 

Detrended Log Spectra. 



n = 0,r2 = 8,r3 = 15, r4 = 23, r5 = 31 and amplitudes 9X = 1,02 = .9,03 = .9,04 = 

.6,05 = .7. Note that the signals are not unlike those contrived series shown in Figure 1. 

The model implies that power spectrum of the received signal at channel j has the 

form 

p» = \e(u)\2p°(u) (2) 

where 
n      n 

IWI2 = E E ^ cos[27Ti/(rfc - rt)]. (3) 

and Pf{v) is the spectrum of Sj(t). It follows that the overall spectrum on channel j 

factors into a product of the signal spectrum and a transfer function that is periodic, with 

quefrencies that are proportional to the time delay differences r^ — T£ for all k, L It is clear 

that taking logarithms, say 

logPJ(i,) = log|^)|2+logP/(r,), (4) 

breaks the product into a sum of two terms consisting of the periodic component and the 

signal spectrum that differs on each channel. Since the signal spectrum, P/(^), is generally 

a smooth function, it is natural to consider the result of fitting a polynomial spline function 

for the signal to each channel and then adjusting the log-spectrum, in order to obtain a 

stationary looking series with strong periodicities at the time delay differences. Following 

through on this procedure leads to the adjusted log-spectra in the lower panel of Figure 

2. We note the periodic and stationary appearance of the series; this observation serves as 

the basis for the frequency domain approach. 

In order to develop the time domain approach, we consider a simplified finite parameter 

model, with the time delays restricted to be multiples of some underlying time delay d, 

say rjfc = kd. Then, (1) becomes 
n 

yj{t) = Y,hsj(t-kd), (5) 
fc=i 

where the signal satisfies a some low-order autoregressive model, say 

Sj{t) -<f>!Sj(t-l)- <hsj(t - 2) = wj(t), (6) 

with Wj(t) taken as white noise series with common noise variance a2. The low-order AR 

model tends to emulate the smooth spectral component of the multiplicative model, since 

the spectrum of the received process given in (2) can now be simplified to 

p(lA-\e(»)\\2 m 



where 
\4>{y)\2 = |1 - fa exp{-2mu] - fa exp{-47rii/}|2. (8) 

and the signal spectrum in (2) is assumed to have the form 

pW = Wf (9) 

which emulates the combination of the source, path and instrument spectra. The forms of 

(5) and (6) also suggest the time domain approach proposed in Section 4. 

3. Cepstral Analysis 

To follow up on the suggestion in Section 2, based on the additive decomposition (4), we 

consider computing the logarithm of the spectral estimator at a single channel as shown, 

for example, in the top panel of Figure 3 for the contrived data. We envision the signal 

spectrum as a relatively smooth function that can be approximated by a cubic spline with 

one knot, i.e. 

logP/(i/) » djo + ajxu + aj2v
2 + aj3v

3 + aj4:(u - i/f)
3

+, 

where Uf is the knot location and (u - Vf)\ is zero for v < Vf. We may estimate the 

parameters and consider the detrended log-spectrum as 

log Pj(u) - log PSj(u) = log-^^. 

The detrended log-spectrum is shown in the lower panel of Figure 3 and seems clearly like 

a stationary process with periodic components that one could isolate by computing the 

spectrum of the log-spectrum, i.e. the cepstrum. Looking back at the bottom panel of 

Figure 2 verifies that all channels seem to carry the same periodicities and are relatively 

stationary. 

This motivates an approach similar to that given in Shumway (1971), where the 

Fourier transform, say 

Qi(d) = FT{lo^} (10) 

is regarded as behaving like the transform of a stationary process in the delay d at each 

channel so that one may write the signal plus noise model 

Qj(d) = S(d) + Vj(d). (11) 
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Here, the signal transform is fixed and unknown and the noise Vj(d) has a complex Gaussian 

distribution with mean 0 and variance cr2(d) at delay d. Then, motivated by the classical 

approach to detecting a signal in N stationarily correlated time series, we note that testing 

the hypothesis S(d) = 0 leads to an F-Statistic involving the stacked cepstrum 

SCT(d) = J2\Qj(d)\2 (12) 
3=1 

and the spectrum of the stacked log spectra, say 

SCM{d) = N\Q{d)\\ (13) 

where 

is the mean Fourier transform of the array log-spectra. Figure 4 shows a mean of the 

array log-spectra and we note that the common periodicities observed in the bottom panel 

of Figure 2 are enhanced in the stack. An important quantity involved in the optimal 

detection statistic is the error cepstrum, defined as 

N 

scE{d) = Y,\QM)-Q{d)\2 

= SCT(d) - SCM(d) (15) 

which is a measure of the extent to which the individual channel transforms differ from the 

mean transform. It can be interpreted as the cepstral noise component. The F-Statistic 

resulting from the signal detection hypothesis is given by 

*i.W> = ("-Dug (*> 
and can also be interpreted as a cepstral signal to noise ratio. The subscripts refer to an 

F distribution with 2 and 2(N - 1) degrees of freedom. 

The information above can be summarized in a cepstral analysis of variance (ANOVA) 

table as shown following Figure 4. 
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Table 1: Cepstral ANOVA at Delay d 

Source Cepstral Sum of Squares df Mean Square 

Signal SCM(d) = N\Q(d)\2 2 

Noise     SCE(d) = J2f=1\Qj(d)-Q(d)\2 2(iV-l) &2(d) 

N 
Stack SCT(d) = J2j=i \Qj(d)\ 2iV 

Table 1 shows the partition of the total cepstral sum of squares or stacked spectrum into 

components corresponding to the signal and noise. Note that the total cepstrum is exactly 

the sum-stack proposed by Alexander et al (1995), computed by adding up the separate 

cepstra shown in Figure 5. Alexander et al have also considered the product-stack which 

does not appear to have any identifiable statistical properties and we do not analyze it 

here. It is clear that the sum-stack will not reflect the common signal components as well 

as either the cepstral component due to the signal (see Figure 4 for the log-spectral stack) 

or the F-Statistic (16).   Note also that the estimated noise cepstrum is computed from 

Table 1 by 
_ SCE{d) 

a {d) - 2(iV3I) <17) 

Figure 6 shows the components of the cepstral variance and the F-Statistic correspond- 

ing to the contrived data shown in Figure 2. The solid line in the upper panel represents 

the total or sum-stacked cepstrum of Alexander et al (1995), i.e. SCT(d) in the equations 

and Table 1. Note the strong component appearing delays 8, 15, 23, 30 and 36 points as 

may be compared with the known true delays 8, 15 23 and 31 points. Note that the true 

time delays would imply quefrencies of the form 7, 8, 15, 16, 23 and 31 points respectively. 

The noise cepstrum, SCE(d), is also shown as the dotted line in the upper panel and we 

note that it is quite small for this simulated example. The cepstral F-Statistic, shown in 

the lower panel of Figure 6, provides a statistical level of significance for the various peaks 

and we note that the significant peaks are 8, 16, 23 and 30 points so that the smallest of the 

larger peaks at d=36 in the stacked cepstrum is not significant. All peaks are significant 

at a false alarm rate of .001. In general, since there are often a large number of delays of 

interest, one should insist on at least .01 as a level of significance. 

10 
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4. Seasonal ARMA Searching 

The cepstral approach is an example of a nonparametric procedure since it requires only 

that the signal spectrum be relatively smooth and that we only want to identify the 

periodicities associated with the time delay differences. One may also consider more 

parametric approaches where the problem can be identified as one of estimating the 

0\, 62, • • •, 0n, <j>x, <f)2 and a1, using the received series yi(t),..., y^(i) for t = 1,..., T and 

the model as given by (5) and (6). Parametric approaches will also involve estimating the 

number of reflections n and settling on a time delay d. If the structure of the reflection 

sequence is unknown, one can also consider multiple deconvolution techniques as in Der 

et al (1987). Single channel deconvolution techniques may also be applied. Approaches 

based on a frequency domain to the likelihood function are often useful, as in Hannan 

and Thomson (1974) or in Shumway and Blandford (1978). Several preliminary trials of 

these general methods seem to be ineffective for the current problem where one has a large 

number of unknown reflections with unknown delays. The parametric model in (5) and 

(6) seems to offer a plausible alternative to the nonparametric cepstral approach and we 

investigate this methodology here. Note that Shumway and McQuarrie (1994) investigated 

this technique in the single channel case. 

Minimizing the sum of squared errors for specified values of n and d leads to the 

objective function 
N     T 

ssE{6l,e2,...,en,<t>u<i>2) = YJY,w)(t)' (18) 
j=l t=nd 

which maximimizes the log likelihood and we may estimate a2 as 

*2 = WF, EE *?(«>, (i9) 
3     * 

where the nonlinear optimization only involves T" = N(T - nd + 1) residuals. In order 

to select a model, we choose n and d as the joint minimizers of the Bayesian Information 

Criterion (BIC), say 

BiCM-^ + fZ+S&m. (20) 

For a summary of the nonlinear Gauss-Newton estimation procedure applied to the re- 

peated measures ARMA model, see Shumway(1988). 

To give an example, consider searching the contrived data in Figure 2 for the best 

fitting seasonal ARMA process. It is convenient to limit the number of reflections to the 

13 



possible range 1 < n < 6 and the delays to the range 3 < d < 12. We begin with d = 3 

so as not to confuse the delays with the first two lags of the autoregressive part. Figure 7 

shows the resulting values of BIC and we note that there are a number of local minima, 

mostly occurring at d = 8. An approximation to the correct model is n = 5, d = 8 which 

also is the global minimum of BIC in Figure 7. The time domain approach has more 

difficulty estimating n in this case, with local minima occurring for n = 1,2,3 and d = 8. 

Note also that the region defined by n — 5,6, d = 7 is also a possible model. In summary, 

there are more possible interpretations for the ultimate model implied by the time domain 

analysis and few approximate statistical significance tests are available for the number of 

reflections. One might consider testing against a model with n = 0, but we did not do so 

because of the number of possible alternatives. 

5. Analysis of Kola Mining Explosions 

We consider applying the frequency and time domain methods to a population of 9 mining 

explosions from the Kola Peninsula (situated in the Russian Arctic), all at the HD9 quarry, 

observed at 5 channels of the ARCESS array in northern Norway (see Der et al, 1987). 

The mini-array consists of a three-component array augmented by two vertical instruments 

from the C-Ring. 

To begin, Figure 8 shows the Pn phase from event number 110 observed at ARCESS 

and we note that the detrended log-spectra show evidence of periodicities. Figure 9 shows 

the original log-spectrum observed at a single channel along with the fitted spline which 

contained a single not at Vf = .25 cycles per point, or half the folding frequency. Since 

we are considering data at 40 points per second, the folding frequency is 20 Hz and the 

knot occurs at 10 Hz. Performing the cepstral analysis of variance and computing the 

F-Statistic in Figure 10 indicates the presence of statistically significant peaks at 24 and 

34 or .60 and .85 seconds. There are also peaks at .18 and .35 seconds of lesser (.05 level) 

significance. One might tentatively hypothesize ripple-firing with delays of about .18-.25 

seconds. It is interesting also to check the noise before the signal for possible delays that 

are not due to ripple-firing. Figure 11 shows the cepstral analysis of variance for this 

case and we only identify some very low quefrencies at a very low significance level (.05). 

Applying the time domain approach, as in Figure 12, shows possible consistent delays at 

delay 7 or .18 seconds and a secondary set of minima at delay .28 seconds. 

We have also analyzed the Pn phases from eight additional mining explosions and the 

results are shown in Table 2. Only peaks that are significant at level .01 are quoted. The 

14 
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results axe mixed, with the time and frequency domain results not matching in a number 

of cases. Analyzing the Lg phases produced results that were roughly consistent with the 

Pn analyses but several cases such as events 054 and 066 showed no signs of ripple-firing. 

Table 2: Estimated Time Delays for HD9 Explosions (in seconds) 

Event F-Statistic SARMA Search 

Pn L9 Pn 

054 .06 - .075,-125 

066 .25,-58 - .05 

110 .60,-85 .30,-85 .18,-23 

147 .18,.50 .18 .18 

182 .50, 1.08 .53, 1.08 .15 

219 .38,.60,.75 .28,.38 .18 

246 .30, .58, 1.23 .33, .80 - 

282 .30,.50,.63,.78, 1.13 1.53, 1.98 - 

285 .58,.65,.98 .18,-48 .18 

6. Discussion 

We have developed frequency and time domain approaches to detecting ripple-firing and 

have tested these methods, both on simulated data and on very small arrays of real data. 

In general, the frequency domain method, leading to the cepstral F-Statistic, is preferred 

because the presumed irregularities that will be present in most ripple-fired signals dictate 

a more nonparametric approach that does not assume a given delay structure. These 

irregularities are due, in part, to the geometry of the firing pattern and the limitations of 

sampling at rates comparable to 20 Hz. The cepstral F-Statistic also achieves a resolution 

advantage due to dividing by the noise cepstrum. Furthermore, the F-Statistic provides a 

threshold for deciding whether a given delay is statistically significant. 

The last comment above suggests that the F-Statistic can be easily incorporated into 

an automatic detection procedure through which one can tag the delays that are statisti- 

cally meaningful and ignore those that are not. In this sense, it can be used as an on-line 

method for detecting ripple-firing as a part of an automatic monitoring system. One sim- 

ply incorporates the statistic into the automatic processing scheme since it only involves 
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using the detrended log-spectra and the averaging operations that will produce the entries 

in the analysis of variance Table 1. 

The question of whether currently configured array data can be used to detect ripple- 

firing well enough to separate mining explosions from those of other kinds has not been 

answered in this report. During the next phase of the project, we intend to test the 

cepstral F-Statistic methodology on more events from larger arrays. Larger arrays are po- 

tentially useful since they will presumably provided a greater enhancement of the common 

periodicities due to ripple-firing. 
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